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Abstract 
 In present study  two different radiative transfer models are used for initial sensitivity studies 
and for  conceptually simple consideration of spatial distributions of cloud and rain conditions 
from ECMWF database. These models are based on Discrete Ordinate Method (DOM) upto N 
streams by Moreau (1999) and   Eddington's approximation applied to DOM by Kummerow et 
al (1993). Both of the these models allow for a full optical thickness and cloud absorptivities. 
The main purpose of the simulations is to delineate the frequencies that are most sensitive  (as 
far as brightness temperatures are concerned) to the surface and rainfall characteristics. 
Following these sensitivity analysis, a combination of passive and active microwave 
observations from TRMM Microwave Imager (TMI) and Precipitation Radar (PR) of Tropical 
Rainfall Measuring Mission (TRMM) satellite is used to estimate rainfall using Neural Network 
(NN) technique. The correlation coefficients of 0.914 and 0.904 between the desired and 
estimated rainfall for both training and testing data of collocated TMI and PR are achieved. The 
effectiveness of the rainfall estimation by using NN can be influenced by many factors, such as 
the representativeness and sufficiency of the training data set, the generalization capability of 
NN, seasonal and location change etc. and thus NN needs to be dynamically updated. 
 
  
1. Introduction 

Precipitation is associated with various atmospheric phenomena both in small and large 

scale. Assessment of precipitation contributes to improved weather forecasting, in small and 

large spatial scales, and a study of global rainfall leads to better understanding of global climate 

variability. Various techniques use microwave brightness temperature data, obtained from 

remote sensing orbiting platforms, to calculate rain rates. Most commonly used techniques are 

based on regressions or other statistical methods. Recent research has shown that NN techniques 

can be used successfully for the rainfall estimation from radiometric measurements from SSM/I 

type of sensors (Moreau et al. 2000, Tsintikidis et al. 1997). NN is a non-parametric method for 

representing the complex relationship between satellite measurements (radar or radiometers) and 

rainfall rates for instance. The NN's are mathematical models that are capable of learning 

complex relationships, such as in case of multichannel brightness temperatures and rainfall. 

They consist of highly interconnected, interactive data processing units.    

 
*Presently on deputation from Department of Space, ISRO Space Applications Center (Ahmedabad), India. 



The study is conducted in two parts. First aspect is the radiative transfer simulations 

based on two different models to test the sensitivity of various channels to the rainfall and 

surface variability to help the creation of matched data sets from most sensitive TMI channels 

and PR collocation position for brightness temperatures and rainfall rates respectively. The 

second aspect is to  examines the performance of neural network solutions.  A  systematic series 

of radiative transfer simulations for different sensitivity experiments have been carried out to 

gain insight for the selection of proper TMI channel combinations for the retrieval of rainfall . 

 
2. Radiative Transfer Models: 
 
The interpretation of rain and cloud remote sensing data requires, accurate accompanying 

radiative transfer calculations in order to establish the link between the observed radiances and 

the state of the atmosphere which causes these radiances.  Many investigators have reviewed the 

basic physics of radiative transfer. However here we describe briefly the radiative transfer 

models to the extent relevant for present study. The  simulation of upwelling radiances 

measurable by TRMM-TMI type of sensors are based on the equations that describe the  transfer 

of microwave radiances through a horizontally infinite and vertically structured plane parallel 

atmosphere. It forms the basis for calculations of upwelling radiances measurable by radiometric 

channels.  The brief description of radiative transfer is outlined below. The basic equation for 

the differential radiant intensity can be written as (Chandrasekhar 1960): 
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where I ( , )τ µ is the radiant intensity at optical depthτ  andµ  = cos(θ) where θ is the zenith 

angle and ( )µτνJ ,  is the source function.  In essence, the above radiative transfer equation 

states that the change in radiant intensity results from the attenuation in intensity along the path 

of propagation due to absorption and outward scattering, and from the enhancement of intensity 

due to scattering of the incoming radiation and thermal emission by the atmospheric 

constituents. 

 

2.1 RT  Model I:  

Description of this model may be found in Weinman and Devis (1978), Kummerow (1993), and 

Viltard et al. (1998), among many others. Basically the Kummerow's model used here is based 

on the discrete ordinate method but with the Eddington's approximation, where the radiances 

and phase function are expanded in series of Legendre and associated Legendre functions and 
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first few orders are selected to simplify the phase matrices.  The solution of resulting equation  

which is a second order differential equation  has a suitable solution  with the constants to be 

determined from the boundary conditions. In order that the above conditions are satisfied in each 

atmospheric layer, the atmospheres are generally divided into homogeneous layers. The fluxes at 

the top and bottom of the layer which are downward and upward fluxes respectively from the 

upper and lower boundary conditions. At the layer interfaces the flux continuity is assumed. The 

radiant intensity can be expressed in more conventional units as the brightness temperature, 

which is the thermodynamic temperature of a black body emitting an equivalent intensity.  

 

2.2 RT Model II:  

In this method the continuum of propagation directions is discretized into a finite number of 

directions so that the integro-differential equations are converted into system of ordinary 

differential equations with constant coefficients, the solution of which are calculated by 

eigenanalysis. The discrete ordinate-eigenanalysis method is applicable when the medium has 

homogeneous absorption and scattering profiles.  We follow here the DOM model developed by 

Moreau (2000) for the simulations similar as in  Kummerow's model simulations mentioned 

above. The difference in two models is evident that later model does not use such an 

approximation while Kummerow model use Eddington's approximation. This approximation 

consists in using  a simplified phase matrices to offer faster  computation of the scattering 

coefficients. In both radiative transfer models the radiative properties of the atmosphere are 

computed using the Mie theory and are integrated over the drop size distributions for each input 

grid cells. 

 

3. Results of Simulations: 
The TMI instrument measures brightness temperatures at 5 different frequencies: 10.65, 19.35, 

21.3, 37.0 and 85.5 GHz, each being polarized both vertically and horizontally but for the 21.3 

GHz which is only polarized vertically. Thus the simulations are carried for these frequencies 

here out of which many are going to be common in MADRAS (exclusion of 10 GHz and 

inclusion of 157 GHz). Some of the preliminary results from the radiative transfer simulations 

based on the Eddington approximation are presented recently by Gairola et al. (2001) for TMI 

and IRS-P4-MSMR frequencies. Thus for the brevity the results from DOM simulations and 

comparison with the observations are presented here. In order to keep actual variability of 

rainfall, we have used ECMWF forecast fields to build a simulated data base. ECMWF profiles 
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does provide wide variety of dynamical situations, but the microphysical and morphological 

properties of liquid and ice has to be introduced. However the different assumptions must not 

introduce a bias, nor should limit the representatively of the simulated data (Moreaue et al. 

2001). ECMWF fields provide a wide variety of vertical structures of atmosphere, clouds and 

rain and thus the situations represent the global applicability for various kinds of hydrometeors 

like, precipitating liquid water (rain drops), non-precipitating liquid water (cloud droplets), 

precipitating ice. All the hydrometeors have been assumed to be spherical, thus using Mie 

formulation. Eventhough the sphericity assumption is not strictly proper, especially for ice 

particles, the average phase function of a randomly oriented ensemble of non-spherical particles 

tends, in general, to approach that of polydisperson of equal-volume spheres (Mugnai and 

Wiscombe, 1980). The gaseous absorption is calculated by Liebe 1993. 

 

Fig. (1) 

Fig. (1) shows the scatter plot of the simulated brightness temperatures of 10 to 85 GHz 
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horizontal and vertical frequencies from DOM solutions. The dynamic ranges of brightness 

temperatures shows good qualitative agreement with the emission and scattering characteristics  

of clear and cloudy/rainy atmospheric conditions that would show such a large dynamic range 

for the TRMM-TMI radiometric channels over the oceans as shown in Fig 2 for a cyclone Bret 

over the Pacific ocean giving scattering and non scattering signatures clearly.  The two branches 

of the brightness temperatures in 37 and 85 GHz in Fig. 1 shows first the increase in brightness 

temperature due to the emission and then the decrease due to the scattering and is coherent in 

both  the figures.  

Fig. 2 

 
For brevity, a quantitative comparison between simulation and  observed TMI brightness 

temperature is shown in upper half panel of Fig. (3 a) for the lowest frequency channel, which 

shows a very good match.  In lower half panel we show an interesting result of the simulation 

from the highest frequency  of 89 GHz for MADRAS channel and compare it with the nearest 

85 GHz channel measurement from TMI. There is some marked difference in the scatter of the 

data in the emission domain which is expected due to the difference in frequency, while in the 

scattering domain the scatter plot from both the channels are quite overlapping. This is also 

expected as the scattering contribution is very prominent in higher frequencies and not much 

separable within such a channel difference. 
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Fig. 3a 
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WF used in above simulations was found to have a   limited 
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dynamic range of the rainfall (upto 15 mm/hr) and thus does not represent the tropical rainfall 

globally. Thus we have simultaneously arranged to accomplish this part of study using the real 

data from co-located TMI and PR of TRMM. However, a larger database is being attempted for 

radiative transfer simulations and retrievals covering all the seasons and tropical regions. 

 

4. TMI and PR Data Base: 
In present study, the retrieval method ahead is based on Neural Network approach, described by 

Moreau (2001). A large data base representing all the possible dynamical ranges of rainfall and 

brightness temperatures is the prerequisite for applying this method. Here the data base is 

generated from the collocated sets of observations between TMI and PR which share a common 

swath of about 200 km on the surface. The PR is the first rain radar in space. The complete 

description of sensor package of TRMM are given in Kummerow et al. 1998. Within this area of 

common swath there are very important observations, ie; the vertical profile of reflectivity from 

PR from rain structures and the brightness temperatures  from TMI from almost same cloud and 

rain systems by nine channels respectively. These sensors makes one of the  very suitable pair of 

coherent observations for estimating rainfall. Two days of TMI and PR data base are used in the 

present study (1,2 Feb, 1998).  The PR data is total rainfall (at 2km height) from PR.  

 

5. Neural Network Approach: 
Multilayer Perceptron (MLP) Neural networks (Rumelhart et al. 1986) are a computational 

method of data analysis that are an extension of traditional statistical methods such as 

regressions, and function approximation. In statistical regressions the modeler has to a priori 

specify the functional form of the relationship likely to exist in the data set (nonlinear vs linear 

vs multiple regressions). The best functional form for the data is based on an error measure such 

as the least squares criterion. Neural networks, form an "internal weight" representation of the 

data as to minimize an error criterion (usually least squares) without too much a priori 

judgements about on the functional form for the data. 

 

 

 

Rain Rate 

Fig. 4.  
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Neural networks in their broadest sense could be defined as a collection of interconnected 

simple computational units that work together cooperatively to solve linear and nonlinear 

problems.   The input units are connected to the output units by way of hidden units. The hidden 

units capture the non-linearity in the mapping between the input and output information.  A 

simple conceptual architecture (without connecting all input and hidden nodes due to simplicity 

of the figure) of the NN is shown in Fig. 4. The neural network is first trained on sample data, 

and the "internal weights" are adjusted to learn patterns and trends in the data. Once trained, the 

network is used to predict on input data. If there are many more hidden units (free parameters) 

than there are data available, the network may not be able to generalize (extrapolate), and 

learning of the network may be hindered by the noise and measurement error in the dataIn the 

present case the inputs are brightness temperatures from all the polarization states of TMI and 

the output is the rainfall rate. All inputs and outputs are normalized so that their new values fall 

in the interval (0 to 1). 

 

 

6. Results and Discussions: 
From the simulations in the previous section it is clear that all channels have considerable effect 
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of rainfall but all measurements from TMI are resolution dependent (around 50 km for 10 GHz 

and 5 km for 85 GHz). Yet, as a first experiment, all the channels of TMI are selected for 

analysis. There are some 9941 collocated TMI and PR points, which have been divided into two 

halves, first one for training the relationship between the input and output vectors of TMI-TB's 

and PR rain respectively by 6000 points and finally testing the relationship obtained by neural 

network training using remaining 3941  set of points. Here the rain rate ranges from 0.01 to 48.5 

mm/hr. This dynamic range of rainfall is quite sufficient for NN training. We carried out various 

experiments and finally opted for 2000 iterations with backpropagation approach that minimizes 

the  cost function. Fig. 5a shows the variation of global error with number of iterations, which is 

the evolution of the error during the training phase. The error decreases substantially after a few 

hundred iterations. Continuous line in Fig. shows the absolute error with number of iterations 

for learning data and dotted for the testing data sets. The desired versus ANN retrieval of rainfall 

for both training and testing data sets are shown in Fig. 5b,c respectively. The overall bias, 

standard deviation and rms error are shown in the respective figures (Fig 5d,e) for learning and 

testing data sets. There are significant correlation's of 0.914 and 0.904 achieved in both sets for 

the architecture of the NN that was conversed to minimum acceptable error in present case with 

2000 iterations and three hidden layers. The figures of error estimates (bias, standard deviation 

and rms error) for both the training and testing data sets show a bias of 3 m/hr between 15 and  
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 25 mm/hr in   Fig (5b and d). The same bias is enhanced in testing data as is seen in respective  

Fig (5c and e). There could be several reasons for this and one of the obvious reason  is  the lack 

of representatively of the data in this range (around 15 to 25 mm/hr) while training the neural 

network. The remaining data set which is around  60% of the original learning data, is a 

significant number to believe the stability of the weighting coefficients of the NN for the 

retrieval of rain rates from TMI observations. However the input data base generation can still 

be considered a multistage problem which involves many degrees of freedom in case of rain and 

clouds. This is apparent from Fig (5b,c) while observing the bias and rms errors. Apart from the 

surface and background atmospheric contributions to the signal the cloud and rain parameters 

themselves impose the largest uncertainty. Presently the initial success of simulations for both 

emission and scattering atmospheres and their corroboration with the observations from TMI 

and PR allows us for more specific and stringent experiments to be carried out using consistent 

and statistically representative input fields over the Oceanic regions for the treatment of the 

involved radiative process for the retrieval of rainfall from MADRAS sensor.  
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Fig. 5e: Data distribution with error statistics (for testing data sets)
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